Как написать сторону треугольника

Содержание
  1. Стороны треугольника
  2. Свойства
  3. Все формулы для треугольника
  4. 1. Как найти неизвестную сторону треугольника
  5. 2. Как узнать сторону прямоугольного треугольника
  6. 3. Формулы сторон равнобедренного треугольника
  7. 4. Найти длину высоты треугольника
  8. Треугольник. Формулы и свойства треугольников.
  9. Типы треугольников
  10. По величине углов
  11. По числу равных сторон
  12. Вершины углы и стороны треугольника
  13. Свойства углов и сторон треугольника
  14. Теорема синусов
  15. Теорема косинусов
  16. Теорема о проекциях
  17. Формулы для вычисления длин сторон треугольника
  18. Медианы треугольника
  19. Свойства медиан треугольника:
  20. Формулы медиан треугольника
  21. Биссектрисы треугольника
  22. Свойства биссектрис треугольника:
  23. Формулы биссектрис треугольника
  24. Высоты треугольника
  25. Свойства высот треугольника
  26. Формулы высот треугольника
  27. Окружность вписанная в треугольник
  28. Свойства окружности вписанной в треугольник
  29. Формулы радиуса окружности вписанной в треугольник
  30. Окружность описанная вокруг треугольника
  31. Свойства окружности описанной вокруг треугольника
  32. Формулы радиуса окружности описанной вокруг треугольника
  33. Связь между вписанной и описанной окружностями треугольника
  34. Средняя линия треугольника
  35. Свойства средней линии треугольника
  36. Периметр треугольника
  37. Формулы площади треугольника
  38. Формула Герона
  39. Равенство треугольников
  40. Признаки равенства треугольников
  41. Первый признак равенства треугольников — по двум сторонам и углу между ними
  42. Второй признак равенства треугольников — по стороне и двум прилежащим углам
  43. Третий признак равенства треугольников — по трем сторонам
  44. Подобие треугольников
  45. Признаки подобия треугольников
  46. Первый признак подобия треугольников
  47. Второй признак подобия треугольников
  48. Третий признак подобия треугольников
  49. Геометрия. Урок 3. Треугольники
  50. Определение треугольника
  51. Виды треугольников
  52. Отрезки в треугольнике
  53. Площадь треугольника
  54. Равнобедренный треугольник
  55. Равносторонний треугольник
  56. Прямоугольный треугольник
  57. Теорема Пифагора
  58. Примеры решений заданий из ОГЭ
  59. Обозначения в треугольнике..
  60. Виды треугольников:
  61. Основные свойства треугольников. В любом треугольнике:
  62. Конгруэнтные треугольники = равные треугольники.
  63. Признаки равенства треугольников:
  64. Признаки равенства прямоугольных треугольников:
  65. Подобные треугольники.
  66. Признаки подобия треугольников:
  67. Свойства подобных треугольников.
  68. Подобие в прямоугольных треугольниках.
  69. Теорема Пифагора.
  70. Теоремы синусов и косинусов.
  71. Теорема синусов.
  72. Теорема косинусов.
  73. Основные линии треугольника.
  74. Медиана.
  75. Свойства медиан треугольника.
  76. Биссектриса
  77. Свойства биссектрисы угла треугольника
  78. Высота треугольника
  79. Свойства высот треугольника
  80. Срединный перпендикуляр
  81. Свойства срединных перпендикуляров треугольника.
  82. Средняя линия
  83. Свойство средней линии треугольника
  84. Формулы площади треугольника

Стороны треугольника

Свойства

Зная стороны треугольника, можно найти все остальные его параметры по выведенным для треугольника формулам, просто подставив их значения. Периметр треугольник будет представлять собой сумму всех его сторон, а площадь выводится по формуле Герона, как квадратный корень из произведения полупериметра на его разность с каждой стороной по очереди, и деленному на два. P=a+b+c S=√(p(p-a)(p-b)(p-c)/2)

Все углы в треугольнике, зная стороны, можно найти через теорему косинусов. (рис.75) cos⁡α=(b^2+c^2-a^2)/2bc

В произвольном треугольнике также есть три медианы m (делящие противоположную сторону пополам), три биссектрисы l (делящие угол пополам) и три высоты h (перпендикуляры из угла к стороне или ее проекции). Все их можно вычислить, имея в распоряжении значения трех сторон. Формула медианы, которая опущена на сторону c.(рис.75.1) m_c=√(2a^2+2b^2-c^2 )/2

Найти медиану, опущенную на сторону a или b, можно заменив необходимые стороны в формуле так, чтобы сторона, поделенная медианой пополам, была со знаком «–». m_a=√(2b^2+2c^2-a^2 )/2 m_b=√(2a^2+2c^2-b^2 )/2

Формула биссектрисы, которая выходит из угла γ и опущена на сторону с. (рис.75.2) l_c=√(ab(a+b+c)(a+b-c))/(a+b)

Чтобы найти биссектрисы, которые выходят из двух других углов, нужно преобразовать формулу аналогично формуле медианы, где противоположная сторона со знаком «–». l_b=√(ac(a+b+c)(a+c-b))/(a+c) l_a=√(bc(a+b+c)(b+c-a))/(b+c)

Формула высоты, которая опущена на сторону a, b или c видоизменяется таким образом, чтобы в знаменателе была нужная сторона.(рис.75.3) h_a=(2√(p(p-a)(p-b)(p-c) ))/a h_b=(2√(p(p-a)(p-b)(p-c) ))/b h_c=(2√(p(p-a)(p-b)(p-c) ))/c

Также в любом треугольнике можно провести среднюю линию, которая также как медиана обозначается буквой m, поэтому для их разделения, будем использовать заглавную M для средней линии. Средняя линия параллельна той стороне, которая выбрана основанием треугольника, и равна ее половине. Среди свойств средней линии можно отметить, что боковые стороны она делит на две равные части, поэтому если начертить все три средние линии в треугольнике, то получится еще один треугольник, подобный первому, в два раза меньше. (рис. 75.7) M_a=a/2 M_b=b/2 M_c=c/2

Читайте также:  Мероприятия по укреплению здоровья сотрудников

В каждый треугольник можно вписать окружность и описать ее вокруг него. Центр вписанной в треугольник окружности будет находиться на пересечении его биссектрис, а радиус будет опущен под прямым углом к любой стороне и его формула выводится также по Герону. (рис.75.5) r=√(((p-a)(p-b)(p-c))/p)

Центр описанной вокруг произвольного треугольника окружности находится на пересечении его медиатрисс (срединных перпендикуляров, радиус опущен в любую вершину или угол, и вычисляется по следующей формуле. (рис.75.6) R=abc/(4√(p(p-a)(p-b)(p-c)))

Источник

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

Формулы длины стороны (основания), (b ):

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

Источник

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Читайте также:  Как пишется отказная от учителя на имя директора

Формулы площади треугольника

Формула Герона

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Геометрия. Урок 3. Треугольники

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

Определение треугольника

Треугольник – многоугольник с тремя сторонами и тремя углами.

Виды треугольников

Основные свойства треугольника:

Отрезки в треугольнике

Биссектриса угла – луч, выходящий из вершины угла и делящий его пополам.

Биссектриса треугольника – отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне.

Свойства биссектрис треугольника:

Замечание: биссектриса угла – это луч, а биссектриса треугольника – отрезок.

Медиана треугольника – отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Свойства медиан треугольника:

Высота треугольника – это перпендикуляр, проведенный из вершины угла треугольника к прямой, содержащей противолежащую сторону этого треугольника.

Если треугольник остроугольный, то все три высоты будут лежать внутри треугольника. Если треугольник тупоугольный, то высоты, проведенные из вершин острых углов будут лежать вне треугольника, а высота, проведенная из вершины тупого угла будет лежать внутри треугольника.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника: средняя линия параллельна одной из его сторон и равна половине этой стороны.

Всего в треугольнике можно провести три средние линии. Три средние линии разбивают исходный треугольник на четыре равных треугольника. Площадь каждого маленького треугольника будет равна четверти площади большого треугольника.

Площадь треугольника

Площадь произвольного треугольника можно найти следующими способами:

Равнобедренный треугольник

Равнобедренным называется треугольник, у которого две стороны равны.

Равнобедренный треугольник может быть остроугольным, прямоугольным и тупоугольным.

Свойства равноберенного треугольника:

Равносторонний треугольник

Равносторонним называется треугольник, у которого все стороны и все углы равны.

Площадь равностороннего треугольника находится по формуле S = a 2 3 4

Высота равностороннего треугольника находится по формуле h = a 3 2

Прямоугольный треугольник

Свойства прямоугольного треугольника:

Теорема Пифагора

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

У прямоугольного треугольника катеты перпендикулярны друг другу, следовательно, площадь можно найти по формуле:

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с треугольниками

Источник

Свойства треугольников.

Меню

Для инженера это еще и единственная «жесткая» плоская фигура на свете.

Раздел математики, посвященный изучению закономерностей треугольников — тригонометрия.

Сумма всех углов в треугольнике равна 180°.

Обозначения в треугольнике..

Вершины треугольника обычно обозначаются заглавными латинскими буквами (A, B, C), величины углов при соответственных вершинах — греческими буквами (α, β, γ), а длины противоположных сторон — прописными латинскими буквами (a, b, c).

Виды треугольников:

Две стороны, образующие прямой угол, называются катетами (АС и АВ), а сторона, противолежащая прямому углу, называется гипотенузой (ВС).

(по числу равных сторон)

(по соотношению сторон)

(Разносторонний треугольник может быть остроугольным, прямоугольным и тупоугольным).

Рассмотрим рис. ниже.

Углы α, β, γ нызываются внутренними углами треугольника.

Угол α, называется смежным по отношению к углу Θ. ( α+ Θ)=180° (развернутый угол)

Основные свойства треугольников. В любом треугольнике:

Против большей стороны лежит больший угол, и наоборот.

Против равных сторон лежат равные углы, и наоборот. (В частности, все углы в равностороннем треугольнике равны.)

Читайте также:  Литературный язык нормированная форма общенародного языка

Сумма углов треугольника равна 180 ° (Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 °).

Продолжая одну из сторон треугольника (AВ), получаем внешний угол Θ.

Любая сторона треугольника меньше суммы двух других сторон и больше их разности:

Конгруэнтные треугольники = равные треугольники.

Два треугольника называются конгруэнтными (равными), если они равны по всем параметрам, т.е. три угла и три стороны одного треугольника равны трем углам и трем сторонам другого треугольника.

Признаки равенства треугольников:

Признаки равенства прямоугольных треугольников:

Два прямоугольных треугольника равны, если у них соответственно равны:

1. Гипотенуза и острый угол.
2. Катет и противолежащий угол.
3. Катет и прилежащий угол.
4. Два катета.
5. Гипотенуза и катет.

Подобные треугольники.

Два треугольника являются подобными, если углы одного треугольника равны, углам тругого треугольника, а стороны подобны, т.е.

Признаки подобия треугольников:

Свойства подобных треугольников.

Подобие в прямоугольных треугольниках.

Треугольники, на которые высота, опущенная из прямого угла, делит прямоугольный треугольник, подобны всему треугольнику по первому признаку, а значит:

1. Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому (Средним геометрическим нескольких положительных вещественных чисел называется такое число, которым можно заменить каждое из этих чисел так, чтобы их произведение не изменилось.) проекций катетов на гипотенузу.

2. Катет равен среднему геометрическому гипотенузы и проекции этого катета на гипотенузу.

Теорема Пифагора.

Теоремы синусов и косинусов.

Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов, причем коэффициент пропорциональности равен диаметру описанной около треугольника окружности:

Теорема косинусов.

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

Основные линии треугольника.

Медиана.

Медиана – это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника AD, CF, BE пересекаются в одной точке O, всегда лежащей внутри треугольника и являющейся центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

Свойства медиан треугольника.

Биссектриса

Биссектриса угла треугольника— это луч, который исходит из вершины треугольника, проходит между его сторонами и делит данный угол пополам. Три биссектрисы треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

Свойства биссектрисы угла треугольника

Высота треугольника

Свойства высот треугольника

Срединный перпендикуляр

Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка(стороны). Три срединных перпендикуляра треугольника АВС(KO, MO, NO, рис.выше) пересекаются в одной точке О, являющейся центром описанного круга( точки K, M, N – середины сторон треугольника ABC).

В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

Свойства срединных перпендикуляров треугольника.

1. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.

2. Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.

Средняя линия

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Формулы площади треугольника

a, b, c — стороны; α — угол между сторонами a и b; p=(a+b+c) / 2— полупериметр; R — радиус описанной окружности; r — радиус вписанной окружности; S — площадь; ha — высота, проведенная к стороне a.

a, b — катеты; c — гипотенуза; hc — высота, проведенная к стороне c.

Источник

Простые слова
Adblock
detector